
Introduction to Vibrations
Free Response Part 2: Spring-Mass Systems with 

Damping  

The equations for the spring-mass model, developed in the previous module (Free Response 

Part 1), predict that the mass will continue oscillating indefinitely. Through experience we know

that this is not the case for most situations. In this tutorial we will introduce the concept of 

viscous damping to account for decaying motion and study the different types of responses 

that can result. This module is a continuation of Free Response Part 1: Spring-mass systems.  

Spring-Mass Model with Viscous Damping

To modify the equations of motion to account for decaying motion, an additional term is 

added that is proportional to the velocity . This term is in the form  where  is a 

constant and is called the damping coefficient (or damping constant). This damping 

corresponds to the type of resistance to motion and energy dissipation that is encountered 

when a piston with perforations is moved through a cylinder filled with a viscous fluid, for 

example oil. Air drag at low velocities, internal forces in structures like shafts and springs, 

etc. can be approximated using this form where the opposing force is directly proportional to

the velocity. 

Returning to the horizontal spring-mass 

system and adding a damper to it, as shown 

in Fig. 1, we get the following equation by 

summing the forces in the x-direction.

... Eq. (1)

or

... Eq. (2) Fig. 1: Single-degree-of-freedom with damping



This equation can be solved using the same 

method used to solve the differential 

equation for the spring-mass system in Part 

1. 

Assuming that the solution has the form  , and substituting it into Eq. (2) we get

... Eq. (3)

Since  is non-zero, we get

... Eq. (4)

The solution to this equation is

... Eq. (5)

Examining this equation leads us to conclude that, depending on the value of  , 

the roots  will either be real or complex. The damping coefficient for which the 

expression under the square root is equal to zero is defined as the critical damping 

coefficient  , and is given by

... Eq. (6)

Also, the dimensionless number , called the damping ratio, is defined such that

... Eq. (7)



Eq. (5) can be rewritten as

... Eq. (8)

The damping ratio allows us to determine whether the roots  are real or complex, which 
determines the type of response the system displays. 

In this case, the roots are a pair of complex conjugates and can be written as

... Eq. (9)
and

... Eq. (10)

Using the same steps used to arrive at the solution for the spring-mass system, the 

solution for the spring-mass-damper system can be written as 

... Eq. (11)

which, using the Euler identity, can be written as

... Eq. (12)

where  and  are constants that can be determined using the initial conditions. 
Additionally, the term , called the damped natural frequency, is defined as



... Eq. (13)

Using the initial conditions,

... Eq. (14)
and

... Eq. (15)

we can obtain the following equations for the two unknowns  and 

... Eq. (16)
and

... Eq. (17)

The form of Eq. (12) shows that the position has a sinusoidal vibration that decays over 
time. 

The following plot shows the system response for a mass-spring-damper system with 
. 

(

 Response for damping ratio=0.2 Response for damping ratio=0.2



From this plot it can be seen that the amplitude of the vibration decays over time. 

In this case, the roots are a pair of real numbers and can be written as

... Eq. (18 a)
and

... Eq. (18 b)



Using the same steps used to arrive at the solution for the spring-mass system, the 

solution for the spring-mass-damper system can be written as 

... Eq. (19)

Since there are no complex numbers, this represents a nonoscillatory response. In this 

case the constants  and  are given by

... Eq. (20)
and 

... Eq. (21)

The following plot shows the system response for a mass-spring-damper system with 

. The initial conditions and system parameters for this curve are the same as the 

ones used for the underdamped response shown in the previous section except for the 

damping coefficient which is 16 times greater. 

(

 Response for damping ratio=2 Response for damping ratio=2



From this plot we can see that the response decays more quickly than the underdamped 

response shown in the previous section. The larger damping leads to quicker energy 

dissipation and does not allow the system to vibrate. 

In this case, the damping ratio is equal to 1 and the roots of Eq. (4) are

... Eq. (22)

The solution for the system is

... Eq. (23)

where the constants  and  are given by



... Eq. (24)
and 

... Eq. (25)

The following plot shows the system response for a mass-spring-damper system with 

. The initial conditions and system parameters for this curve are the same as the 

ones used for the underdamped and overdamped responses shown in the previous 

sections except for the damping coefficient. 

(

 Response for damping ratio=1 Response for damping ratio=1

This case separates the oscillatory case from the nonoscillatory case. It is also the case 

that provides the fastest return to the equilibrium position without oscillation. 



The following plot shows an overlay of the three plots for the different coefficients given 
above. 

Overlay of Under, Over and Critically damped responsesOverlay of Under, Over and Critically damped responses

For the following plot, the damping ratio can be changed by changing the spring stiffness  

and damping coefficient  using the gauges shown below. The initial conditions and 

parameters are the same as for the plot shown above, except for the spring stiffness and 

the damping coefficient which can be adjusted. 



Examples with MapleSim

Example 1: Spring-Pendulum with damping

Problem Statement: A component of a machine 

is modeled as a pendulum connected to a spring 

(as shown on the right). Derive the equation of 

motion and find the natural frequency of the 

system. The mass of the pendulum is 2kg, the 

length of the pendulum is 0.5m and the stiffness 

of the spring is 20 N/m. Assume that the rod of 

the pendulum has no mass. The initial angular 

displacement is 0.175 rad (approx. 10 ) 

measured from the vertical and there is no initial 

angular velocity. Find the approximate value of 

the damping coefficient required for the 



oscillations to die out after about 3 seconds.  Fig. 2: Spring-pendulum example

Analytical Solution

Data:

[kg]

[m]

[N/m
]

[m/s2

]

[rad]

[rad/
s]

Solution:

Since the angle is small, we will assume that the spring stretches and compresses in 

the horizontal direction only. Hence the force due to the spring can be written as

and the force due to the damper can be written as

Taking the sum of the moments of force about the pivot we get

 

where  is the moment of inertia of the pendulum. This equation can be rewritten as



(2.1.1.3)(2.1.1.3)

(2.1.1.1)(2.1.1.1)

(2.1.1.2)(2.1.1.2)

or

Comparing this equation to the form of Eq. (2) we can conclude that the natural 

frequency of the system is

 = 

and the critical damping coefficient is

 = 75.25104651

From Eq. (12) it can be seen that, for underdamped motion, the amplitude of the 

oscillations decays with time and is equal to .

Here, 

and

Therefore the amplitude of the oscillations is given by 



(2.1.1.4)(2.1.1.4)

(2.1.1.6)(2.1.1.6)

(2.1.1.5)(2.1.1.5)

Since this is never actually becomes 0, we need to define what we consider as "died-

out" oscillations. For example in this case we can say that the oscillations have died 

out once the amplitude of the oscillations is less than 0.0035 rad (2 percent of the 

initial displacement).

21.08209418

Therefore, the required damping coefficient is about 21 N$s/m. 

Graphical solution

An alternate method is to plot the displacement as a function of time and vary the 

damping constant until it appears to have died out at about 3 seconds. For the 

following plot, the slider can be used to adjust the damping coefficient to find an 

approximate value of the damping coefficient which causes the oscillations to die after

3 seconds.    
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MapleSim Simulation

Constructing the model

Step1: Insert Components

Drag the following components into the workspace (these are the same ones used 

for the simulation in Part 1): 

Table 1: Components and locations 

Component Location

(2 required)

Multibody >
Bodies and 

Frames

Multibody >
Joints and 

Motions



(2 required)

Multibody >
Bodies and 

Frames

Multibody >
Bodies and 

Frames

Multibody >
Visualization

Multibody >
Visualization

Multibody >
Visualization

Multibody >
Forces and 

Moments



Multibody >
Visualization

Step 2: Connect the components

Connect the components as shown in the following diagram (the dashed boxes are

not part of the model, they have been drawn on top to help make it clear what the 

different components are for). 



1. 1. 

1. 1. 

3. 3. 

2. 2. 

Fig. 3: Component diagram

Step 3: Set up the Pendulum

Click the Revolute component and enter 0.175 rad for the initial angle ( ) and

select Strictly Enforce in the drop down menu for the initial conditions ( ).

The axis of rotation ( ) should be left as the default axis [0,0,1]. 

Enter [0,-0.25,0] for the x,y,z offset ( ) of both the Rigid Body Frames.

Enter 2 kg for the mass ( ) of the Rigid Body Frame. 

Step 4: Set up the Spring

Click the Fixed Frame component connected to the TSDA (FF1 in the 



2. 2. 

1. 1. 

1. 1. 

3. 3. 

4. 4. 

3. 3. 

1. 1. 

2. 2. 

2. 2. 

diagram) and enter [-0.25,-0.25,0] for the x,y,z offset ( ).

Click the TSDA component and enter 20 N/m for the spring constant ( ). 

Also, enter 0.25 m for the unstretched length ( ) to correspond to the location 

of the Fixed Frame. Enter an initial guess for the damping constant ( ). 

This damping constant value will be varied to find the value that satisfies the 

problem specifications. 

Step 5: Set up the visualization (Inserting the Visualization components is 
optional)

Click the Cylindrical Geometry component and enter a value around 0.01 m 

for the radius.

Click the Spherical Geometry component and enter a value around 0.05 m 

for the radius. 

Click the Spring Geometry component, enter a number around 10 for the 

number of windings, enter a value around 0.02 m for radius1 and enter a 

value around 0.005 m for radius2. 

Step 6: Run the Simulation

Click the Probe attached to the Revolute joint and select Angle, Speed and

Acceleration to obtain plots of the angular position, speed and acceleration 

vs. time. 

In the Settings tab, change the Simulation duration to around 4 s to make 

the plots that are generated easier to read.

Run the simulation. 

Repeat the simulation by varying the value for the damping constant to find 

the value that satisfies the specifications. 

The following video shows the visualization of the simulation.



1. 1. 

Video Player

Video 1: Simulation visualization

Example 2: Bicycle suspension 

Problem Statement: The front wheel assembly of a 

bicycle with suspension can be crudely modeled as a 

mass, representing the tire and the wheel,attached to 

two parallel spring-dampers which represent the 

suspension. Fig. 4, on the right, illustrates this model. 

The mass  is approximately 3 kg. 

If the stiffness of the springs that represents the 

suspension ( ) is 50000 N/m, what should the minimum

damping coefficient ( be such that there are no 



1. 1. 

oscillations if the wheel is given an initial velocity of 1 

m/s in a direction that compresses the assembly. 
Fig. 4: Bicycle wheel model

Analytical solution

Data:

[N/m]

[kg]

Solution:

The equation of motion for the mass can be written as

or

The minimum damping coefficient for which the system will not oscillate can be 

determined by finding the value of the damping coefficient for which the damping ratio

is 1. Using Eq. (7) we get the following equation which can be solved to find the 

required damping coefficient. 



1. 1. 

 = 
at 5 digits

547.72

Therefore the damping coefficient  should be approximately 550 [N$s/m] for there to 
be no oscillations. 

MapleSim Simulation

Step1: Insert Components

Drag the following components into the workspace: 

Table 2: Components and locations 

Component Location

1-D 
Mechanical 

> 
Translational
 > Common

(2 required)

1-D 
Mechanical 

> 
Translational
 > Common

(2 required)

1-D 
Mechanical 

> 
Translational
 > Common

1-D 
Mechanical 

> 



1. 1. 

2. 2. 

1. 1. 

1. 1. 

3. 3. 

Translational
 > Common

Step 2: Connect the components

Connect the components as shown in the following diagram. 

Fig. 13: Component diagram

Step 3: Set parameters and initial condition

Enter 50,000 N/m for the spring constants ( ) of both the Translational Spring 

components. 

Enter an initial guess (for example 100 N$s/m) for the damping constants ( ) of 

both the Translational Damper components.

Click the Mass component, enter 3 kg for the mass ( ) and -1 m/s for the initial 

velocity ( ). Select the check mark that enforces this initial condition.

Step 4: Run the Simulation

Attach a Probe to the Mass component as shown in Fig. 13. Click this probe and

select Length in the Inspector tab. This will show the position of the mass as a 

function of time. 



1. 1. 

3. 3. 

2. 2. Click Run Simulation ( ). 

Rerun the simulation by varying the damping coefficient using a systematic trial 

and error approach to find the approximate value of the damping coefficient that 

leads to no oscillations. 
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